

Computational methods for miRNA binding interactions

Funded by NSF

Small ncRNAs

- Two flavors of small non-coding RNA:
 - 1. micro RNA (miRNA)
 - 2. short interfering RNA (siRNA)

• Properties of small non-coding RNA:

- Involved in silencing other mRNA transcripts.
- Called "small" because they are usually only about 21-24 nucleotides long.
- Synthesized by first cutting up longer precursor sequences (like the 61nt one that Lee discovered).
- Silence an mRNA by base pairing with some sequence on the mRNA.

- Hundreds miRNA genes are already identified in human genome.
- Most miRNAs start with a U
- The second 7-mer on the 5' end is known as the "seed."
 - When an miRNAs bind to their targets, the seed sequence has perfect or near-perfect alignment to some part of the target sequence.
 - Example: UGAGCUUAGCAG. . .

Locating miRNA Genes: Experimentally

• Locating miRNA experimentally is difficult.

• Procedure:

- 1. Find a gene that causes down-regulation of another gene.
- 2. Determine if no protein is encoded.
- 3. Analyze the sequence to determine if it is complementary to its target.

Locating miRNA Genes: Comparative Genomics

• Idea: Find the seed binding sites.

- 1. Examine well-conserved 3' UTRs among species to find wellconserved 8-mers (A + seed) that might be an miRNA target sequence.
- 2. Look for a sequence complementary to this 8-mer to identify a potential miRNA seed. Once found, check flanking sequence to see if any stable hairpin structures can form—these are potentially pre-miRNAs.
- 3. To determine the possibility of secondary RNA structure, use RNA fold.

Finding miRNA Targets: Method 1

• Scoring:

- Mismatches and indels allowed.
- Matrix based on RNA-RNA binding energies.
 - Use known binding energies of Watson-Crick pairing and wobble (G-U) pairing.
- Binding energy (score) calculated for every two adjacent pairings (unlike the standard alignment algorithm which just takes into account the "score" for one pair at a time).
 - Adds dimensions to scoring matrix.
 - Adds complexity to recurrence relation.

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Method 2: Details

• Verification:

- Find the number of predicted binding sites per miRNA.
- Compare it to number of binding sites for a randomly generated miRNA.
- The result is much higher.

Analysis of the Two Methods

- Method 1:
 - Good at identifying very strong, highly complementary miRNA targets.
 - Found gene targets with one miRNA binding site, failed to identify genes with multiple weaker binding sites.

• Method 2:

- Good at identifying gene targets that have many weaker interactions.
- Fails to identify single-site genes.

Analysis of the Two Methods

• Both Methods:

- Speed is an issue.
- Won't find targets that aren't in the 3' UTR of a gene.

• We need more species sequenced!

- Conserved sequences are used to discover small RNAs.
- Conserved small RNAs are used to discover targets.
- Confidence in prediction of small RNAs and targets.
- Allows for broader scope with different combinations of species.

Results

- Predicted a large portion of already known targets and provided direction for identifying undiscovered targets.
- Found that it is more common that genes are regulated by multiple small RNAs.
- Found that many small RNAs have multiple targets.

Many new discoveries from the CLASH experiments:

- > miRNAs show frequent non-canonical targeting of mRNAs
- > Non-seed interactions are common and functional
- > And more?

Method	ТР	FN	FP	Recall TP/(TP+FN)	Precision TP/(TP+FP)	F-score
TarPmiR	4695	3819	19950	0.551	0.191	0.284
miRanda	3852	4662	51849	0.452	0.069	0.120
TargetScan	1164	7350	10281	0.136	0.101	0.116
Mirmap	1821	6693	30746	0.214	0.056	0.089

set	# of miRNAs input	Performance measurement	TarPmiR	miRanda	TargetScan	miRmap
1	60	# of predictions	240605	246311	219304	504447
		% of correct predictions	11904/16041=74.	7061/16041=44.0	6248/16041=39.0	7121/16041
			2%	%	%	=44.4%
		Recall	0.742	0.440	0.390	0.444
		Precision	0.0495	0.0287	0.0285	0.014
	120	# of predictions	481135	476827	461280	906654
		% of correct predictions	13846/16041=86.	9683/16041=60.4	8969/16041=55.9	10342/16041=64.
			3%	%	%	5%
		Recall	0.863	0.604	0.559	0.645
		Precision	0.0288	0.0203	0.0194	0.0114
0	60	# of predictions	469752	453880	437791	971238
		% of correct predictions	34301/43251	20378/43251	17556/43251	20543/43251
			=79.3%	=47.1%	=40.6%	=47.5%
		Recall	0.793	0.471	0.406	0.475
		Precision	0.0730	0.0449	0.0401	0.0211
	120	# of predictions	961112	902611	922373	1952258
		% of correct predictions	38821/43251=	23762/43251=	24578/43251=	25667/43251=
			89.8%	54.9%	56.8%	59.3%
		Recall	0.898	0.549	0.568	0.593
		Precision	0.0403	0.0263	0.0266	0.0131
jiif	119	# of predictions	285491	439485	875442	341773
		% of correct predictions	10766/11080=97.	9069/11080=81.8	10084/11080=91.	7840/11080=70.8
			2%	%	0%	%
		Recall	0.972	0.818	0.910	0.708
		Precision	0.0377	0.0206	0.0115	0.0229
IV	50	# of predicted interactions	102324	87462	69184	113211
		% of correct predictions	5515/15206-25.0	4225/15206-20.2	2021/15206-24.0	4521/15296-20.4
		n or correct predictions	%	%	%	%
		Pecall	0 0 358	0.080	0.248	0 0 0 0 0
		Precision	0.0530	0.0496	0.0552	0.0400
	100	# of predicted interactions	A121A0	337863	286667	/13212
	144	# of predicted interactions	714174	001000	200007	719619
		% of correct predictions	8127/15562=52.2	6442/15562=41.4	5644/15562=36.3	5323/15562=34.2
			%	%	%	%
		Recall	0 522	0.414	0 363	n 342
				nonshennushennushennushen		2 IN IN IN HIS IS IN 1993 TO IS

