Application of Deep Learning Models to MicroRNA Transcription Start Site Identification

Clayton Barham, Mingyu Cha, Xiaoman Li, Haiyan Hu

microRNA

- Small non-coding RNA, ~22 nucleotides, abbreviated as miRNA
- Involved in almost all key biological processes, such as development, differentiation, and so on.
- RNA silencing and post-transcriptional regulation of gene expression via base-pairing with complementary sequences within mRNA of protein coding genes

Problem Description

- Predict miRNA TSS
- Predict features from raw sequence data

Dataset Description

- Compilation of 7,610 CAGE TSS peak regions
 - Width smaller than 10bps
 - At least 500bp away from each other
 - Have PollI, Dnase and H3K4m3 active gene markers
- Positive training data: the central 100bp of the compiled TSS regions
- Negative training data:
 - 100bp flanking of the positive training regions
 - 100bp randomly sampled from intergenic regions
- Convert sequences to 100x4 one hot encoding
 - ACTGGCTAAC

1	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	1	0	0	0
0	1	0	0	0	1	0	0	0	1
0	0	0	1	1	0	0	0	0	0

Results: Flanking Data SetData SetPrecisionRecallF1-ScoreAccuracyLSTM 00.85620.36710.51390.7749LSTM 10.35290.10940.16700.6545

LSTM 1	0.3529	0.1094	0.1670	0.6545
LSTM 2	0.9280	0.2984	0.4516	0.7358
LSTM 3	0.9437	0.2694	0.4192	0.7527
LSTM 4	0.9810	0.2640	0.4161	0.7420
Average	0.8124	0.2617	0.3959	0.7320
Average w/o LSTM 1	0.9272	0.2998	0.4530	0.7513
CNN 0	0.9302	0.3288	0.4858	0.7744
CNN 1	0.9522	0.2804	0.4332	0.7456
CNN 2	0.8725	0.3167	0.4647	0.7340
CNN 3	0.8649	0.3003	0.4458	0.7527
CNN 4	0.9809	0.2615	0.4129	0.7411
Average	0.9201	0.2975	0.4497	0.7496
Average w/o CNN 1	0.9121	0.3018	0.4535	0.7506
SVM 0	0.2283	0.2342	0.2312	0.4951
SVM 1	0.2931	0.2830	0.2879	0.5147
SVM 2	0.2969	0.2716	0.2837	0.5
SVM 3	0.2322	0.2493	0.2405	0.4782
SVM 4	0.2680	0.2423	0.2545	0.5058
Average	0.2637	0.2561	0.2598	0.4988
Average w/o SVM 1	0.2564	0.2494	0.2528	0.4948

- Test on flanking data set shows deep learning models are able to distinguish TSS regions from their neighboring regions.
- Comparisons between LSTM, CNN, SVM show deep learning models have much better performance.

Resu	ılts: lı	nter	genio	: Data	a Set
Data Set	Precision	Recall	F1-Score	Accuracy	
LSTM 0	0.972	0.3408	0.5047	0.7882	
LSTM 1	0.7146	0.3981	0.5113	0.7513	
LSTM 2	0.9007	0.3267	0.4795	0.7638	
LSTM 3	0.9390	0.3072	0.4629	0.7620	
LSTM 4	0.9289	0.2776	0.4274	0.7513	
Average	0.8911	0.3301	0.4817	0.7633	
CNN 0	0.9713	0.3324	0.4953	0.7855	
CNN 1	0.9081	0.3356	0.4901	0.7718	
CNN 2	0.8974	0.3267	0.4790	0.7633	
CNN 3	0.8076	0.3684	0.5059	0.7598	
CNN 4	0.8601	0.3347	0.4818	0.7593	
Average	0.8889	0.3395	0.4913	0.7679	
SVM 0	0.2297	0.2496	0.2392	0.4973	
SVM 1	0.2154	0.2201	0.2177	0.4831	
SVM 2	0.2344	0.2253	0.2298	0.4969	
SVM 3	0.2304	0.234	0.2322	0.4831	
SVM 4	0.2347	0.2297	0.2322	0.4920	
Average	0.2289	0.2312	0.2303	0.4905	

- Test on intergenic data set shows deep learning models are able to distinguish TSS regions from intergenic regions.
- Comparisons between LSTM, CNN, SVM show deep learning models again have much better performance.

Results: Cell-line Specific Predictions

	GM12878	HeLa-S3	HepG2	K562
LSTM	623 / 57	757 / 64	637 / 65	718 / 71
CNN	616 / 57	764 / 58	628 / 59	719 / 73

ofTRUE / # of FALSE predictions

	GM12878	HeLa-S3	HepG2	K562
LSTM	91.62%	92.20%	90.74%	91.00%
CNN	91.53%	92.94%	91.41%	90.78%

Accuracy of predicted results by cell lines

- We separate the test data by cell lines to compare results in a cell-line specific manner.
- Test on flanking data set shows deep learning models are able to identify cell-line relevant TSS regions

Questions?