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microRNA

* Small non-coding RNA, ~22 nucleotides, abbreviated as miRNA

* Involved in almost all key biological processes, such as development,
differentiation, and so on.

* RNA silencing and post-transcriptional regulation of gene expression
via base-pairing with complementary sequences within mRNA of
protein coding genes
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Crucial steps in miRNA processing -

* Transcribed by RNA polymerases Il or Il as
pri-miRNA (primary miRNA)

* Processed by RNase Il enzyme Drosha to
miRNA precursor (pre-miRNA)

* Transported to cytoplasm, and RNase Il
enzyme Dicer cleaves off the double strand
of the hairpin to form mature miRNA

* Forms miRNPs (miRNA-protein complexes)
and binds to partially complementary sites
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miRNA TSS prediction Hard

* Difficulty of predicting promoters from short conserved sequence
* features without producing a high number of false positives
* Pri-miRNAs are several kilobases long, and rapidly cleaved in the

nucleus by the enzyme Drosha

* Limited experimental detection and annotation of miRNA promoter
* Recent studies indicate that intronic miRNA are not necessarily

cotranscribed with host genes




Problem Description

* Predict miRNA TSS

* Predict features from raw sequence data

Dataset Description

* Compilation of 7,610 CAGE TSS peak regions
* Width smaller than 10bps
* At least 500bp away from each other
* Have Polll, Dnase and H3K4m3 active gene markers

* Positive training data: the central 100bp of the compiled TSS regions

* Negative training data:
* 100bp flanking of the positive training regions
* 100bp randomly sampled from intergenic regions

* Convert sequences to 100x4 one hot encoding
* ACTGGCTAAC
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Method Description —LSTM Model Architectures

* Input: 100*4 one-hot matrix encoding the

* LSTM (long short term memory)-based
Architecture:
* |nput
* Convolutional Layer
* Max Pooling Layer

* Dropout Layer

* Bi-LSTM layer CTATG
00100

* Dropout Layer 01010

* Dense Layer 10000

* Sigmoid Output
* Loss function: binary cross-entropy
* Activation function: Rectified Linear Unit
function
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100bp sequence

* OQOutput: a probability of the input

containing a TSS
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» Convolutional Layer:

* Neural network layer using weight
sharing

* Scan input with a number of kernels

* Recognizes motifs in DNA sequence
input
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* Max Pooling Layer:
* Reduces size of input

* QOut of a set of pool_size elements, select

the max

Method Description — Convolution & Max Pooling
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Method Description — Bi-LSTM

e LSTM:
* Long-Short Term Memory
* Bi-LSTM = Bidirectional LSTM
* Learns ‘regulatory grammar’ — spatial patterns of motifs
* Use this to refine probability of a given motif at a
given position
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* Dense Layer: * Sigmoid Layer:
* Standard neural network * Dense layer with sigmoid
layer activation function

e Convert feature activation values
to probabilities




Method Description — CNN Model Architectures

* CNN (convolutional neural network)-
based Architecture:

* Input

* Convolutional Layer
* Max Pooling Layer
* Dropout Layer
* Convolutional Layer
* Max Pooling Layer
* Dropout Layer
* Dense Layer

* Sigmoid Output

Recognizes local motifs

* Input: 100*4 one-hot matrix encoding the
100bp sequence

* Qutput: a probability of the input
containing a TSS

TSS
Probability
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Recognizes local motifs

Results: Flanking Data Set

Data Set Precision Recall Fl-Score Accuracy

LSTM O 0.8562 0.3671 0.5139 0.7749

LSTM 1 0.3529 0.1094 0.1670 0.6545

LSTM 2 0.9280 0.2984 0.4516 0.7358

LSTM 3 0.9437 02694 04192 07527 * Test on flanking data set shows deep

peTe O8I0 0201 edlel 07120 learning models are able to distinguish

Average 0.8124 0.2617 0.3959 0.7320 g g
Average w/o LSTM 1 09272 02998  0.4530 0.7513 TSS regions from their neigh boring

C'N’,\i Q 0.9302 0.3288 0.4858 0.7744 reglonS.

CNN 1 0.9522 0.2804 0.4332 0.7456

CNN 2 0.8725 0.3167 0.4647 0.7340

CNK 3 08649 0.3003  044ss 07527 * Comparisons between LSTM, CNN, SVM

CNN 4 0.9809 0.2615 0.4129 0.7411 .

Average 00901 04075 04497 07406 show deep learning models have much
Average w/o CNN 1 0.9121 03018 0.4535 0.7506 better performance_

SVM O 0.2283 0.2342 0.2312 0.4951

SVM 1 0.2931 0.2830 0.2879 0.5147

SVM 2 0.2969 0.2716 0.2837 0.5

SVM 3 0.2322 0.2493 0.2405 0.4782

SVM 4 0.2680 0.2423 0.2545 0.5058

Average 0.2637 0.2561 0.2598 0.4988
Average w/o SVM 1 0.2564 0.2494 0.2528 0.4948
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Results: Intergenic Data Set

Data Set Precision Recall F1-Score Accuracy
LSTM 0 0.972 0.3408 0.5047 0.7882
LSTM 1 0.7146 0.3981 0.5113 0.7513
LSTM 2 0.9007 0.3267 0.4795 0.7638
LSTM 3 0.9390 0.3072 0.4629 0.7620
LSTM 4 0.9289 0.2776 0.4274 0.7513
Average 0.8911 0.3301 0.4817 0.7633
CNNO 09713 0.3324 0.4953 0.7855
CNN 1 0.9081 0.3356 0.4901 0.7718
CNN2 0.8974 0.3267 0.4790 0.7633
CNN 3 0.8076 0.3684 0.5059 0.7598
CNN 4 0.8601 0.3347 0.4818 0.7593
Average 0.8889 0.3395 0.4913 0.7679
SVM 0 0.2297 0.2496 0.2392 0.4973
SVM 1 0.2154 0.2201 0.2177 0.4831
SVM 2 0.2344 0.2253 0.2298 0.4969
SVM 3 0.2304 0.234 0.2322 0.4831
SVM 4 0.2347 0.2207 0.2322 0.4920
Average 0.2289 0.2312 0.2303 0.4905

Test on intergenic data set shows deep
learning models are able to distinguish
TSS regions from intergenic regions.

* Comparisons between LSTM, CNN, SVM

show deep learning models again have
much better performance.

Results: Cell-line Specific Predictions

GM12878 HeLa-S3 HepG2 K362
LSTM 623 /57 757/ 64 637 /65 718/71
CNN 616 /57 764 /58 628 /59 719/73

# of TRUE / # of FALSE predictions

GM12878 HeLa-S3 HepG2 K562
LSTM 91.62% 92.20% 90.74% 91.00%
CNN 91.53% 92.94% 91.41% 90.78%

Accuracy of predicted results by cell lines

We separate the test data by cell lines
to compare results in a cell-line specific
manner.

Test on flanking data set shows deep
learning models are able to identify
cell-line relevant TSS regions
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Results: Compare with Hua et al: the sequence feature
(TATA) identification from TSS predictions in K562 cell
line
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Conclusions

* Both LSTM and CNN models provided high-resolution miRNA TSS
predictions for testing dataset obtained from FANTOM project.

* The trainings partition for each data set consisted of approximately 18,000
training samples, which is a small training set by the standards of typical
deep learning training sets. More positive examples for either network will
further improve its ability to identify TSSs.

* We focused on only narrow peaks of CAGE TSS regions. Our model indicate
any true positive sample which lacked a sufficiently clearly defined TATA
box in the expected position would not have been recognized as a positive
sample. This suggests a potential avenue for improving the performance of
the test models by encouraging them to consider additional features.
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Questions?




